Zbi贸r informacji o tym co ka偶dy m艂ody adept ML i DataScience wiedzie膰 powinien. Temat jest rozleg艂y i nie mam jeszcze pomys艂u jak to dobrze ustrukturyzowa膰, ale b臋d臋 pr贸bowa艂.
Mathematics
- Linear Algebra (Vectors; Norm of a vector; Matrices; Transpose of a matrix; The inverse of a matrix; The determinant of a matrix; Trace of a Matrix; Dot product; Eigenvalues; Eigenvectors)
- Probability Theory and Statistics (Mean, Median, Mode, Standard deviation/variance, Correlation coefficient and the covariance matrix, Probability distributions (Binomial, Poisson, Normal), p-value, Baye鈥檚 Theorem (Precision, Recall, Positive Predictive Value, Negative Predictive Value, Confusion Matrix, ROC Curve), Central Limit Theorem, R_2 score, Mean Square Error (MSE), A/B Testing, Monte Carlo Simulation)
- Multivariable Calculus (unctions of several variables; Derivatives and gradients; Step function, Sigmoid function, Logit function, ReLU (Rectified Linear Unit) function; Cost function; Plotting of functions; Minimum and Maximum values of a function)
- Optimization Methods (Cost function/Objective function; Likelihood function; Error function; Gradient Descent Algorithm and its variants (e.g. Stochastic Gradient Descent Algorithm))
ML Roadmap
A Tour of Machine Learning Algorithms
Obrazkowa mapa: ml-engineer-roadmap
Learning Style
- Supervised Learning
- Unsupervised Learning
- Semi-Supervised Learning
Machine Learning Algorithms
- Regression Algorithms
- Ordinary Least Squares Regression (OLSR)
- Linear Regression
- Logistic Regression
- Stepwise Regression
- Multivariate Adaptive Regression Splines (MARS)
- Locally Estimated Scatterplot Smoothing (LOESS)
- Instance-based Algorithms
- k-Nearest Neighbor (kNN)
- Learning Vector Quantization (LVQ)
- Self-Organizing Map (SOM)
- Locally Weighted Learning (LWL)
- Support Vector Machines (SVM)
- Regularization Algorithms
- Ridge Regression
- Least Absolute Shrinkage and Selection Operator (LASSO)
- Elastic Net
- Least-Angle Regression (LARS)
- Decision Tree Algorithms
- Classification and Regression Tree (CART)
- Iterative Dichotomiser 3 (ID3)
- C4.5 and C5.0 (different versions of a powerful approach)
- Chi-squared Automatic Interaction Detection (CHAID)
- Decision Stump
- M5
- Conditional Decision Trees
- Bayesian Algorithms
- Naive Bayes
- Gaussian Naive Bayes
- Multinomial Naive Bayes
- Averaged One-Dependence Estimators (AODE)
- Bayesian Belief Network (BBN)
- Bayesian Network (BN)
- Clustering Algorithms
- k-Means
- k-Medians
- Expectation Maximisation (EM)
- Hierarchical Clustering
- Association Rule Learning Algorithms
- Apriori algorithm
- Eclat algorithm
- Artificial Neural Network Algorithms
- Perceptron
- Multilayer Perceptrons (MLP)
- Back-Propagation
- Stochastic Gradient Descent
- Hopfield Network
- Radial Basis Function Network (RBFN)
- Deep Learning Algorithms
- Convolutional Neural Network (CNN)
- Recurrent Neural Networks (RNNs)
- Long Short-Term Memory Networks (LSTMs)
- Stacked Auto-Encoders
- Deep Boltzmann Machine (DBM)
- Deep Belief Networks (DBN)
- Dimensionality Reduction Algorithms
- Principal Component Analysis (PCA)
- Principal Component Regression (PCR)
- Partial Least Squares Regression (PLSR)
- Sammon Mapping
- Multidimensional Scaling (MDS)
- Projection Pursuit
- Linear Discriminant Analysis (LDA)
- Mixture Discriminant Analysis (MDA)
- Quadratic Discriminant Analysis (QDA)
- Flexible Discriminant Analysis (FDA)
- Ensemble Algorithms
- Boosting
- Bootstrapped Aggregation (Bagging)
- AdaBoost
- Weighted Average (Blending)
- Stacked Generalization (Stacking)
- Gradient Boosting Machines (GBM)
- Gradient Boosted Regression Trees (GBRT)
- Random Forest