Developer.

Machine learning 馃 roadap

Zbi贸r informacji o tym co ka偶dy m艂ody adept ML i DataScience wiedzie膰 powinien. Temat jest rozleg艂y i nie mam jeszcze pomys艂u jak to dobrze ustrukturyzowa膰, ale b臋d臋 pr贸bowa艂.

Newsletter Uczymy Maszyny

Mathematics

  • Linear Algebra (Vectors; Norm of a vector; Matrices; Transpose of a matrix; The inverse of a matrix; The determinant of a matrix; Trace of a Matrix; Dot product; Eigenvalues; Eigenvectors)
  • Probability Theory and Statistics (Mean, Median, Mode, Standard deviation/variance, Correlation coefficient and the covariance matrix, Probability distributions (Binomial, Poisson, Normal), p-value, Baye鈥檚 Theorem (Precision, Recall, Positive Predictive Value, Negative Predictive Value, Confusion Matrix, ROC Curve), Central Limit Theorem, R_2 score, Mean Square Error (MSE), A/B Testing, Monte Carlo Simulation)
  • Multivariable Calculus (unctions of several variables; Derivatives and gradients; Step function, Sigmoid function, Logit function, ReLU (Rectified Linear Unit) function; Cost function; Plotting of functions; Minimum and Maximum values of a function)
  • Optimization Methods (Cost function/Objective function; Likelihood function; Error function; Gradient Descent Algorithm and its variants (e.g. Stochastic Gradient Descent Algorithm))

ML Roadmap

A Tour of Machine Learning Algorithms

Obrazkowa mapa: ml-engineer-roadmap

Learning Style

  • Supervised Learning
  • Unsupervised Learning
  • Semi-Supervised Learning

Machine Learning Algorithms

  • Regression Algorithms
    • Ordinary Least Squares Regression (OLSR)
    • Linear Regression
    • Logistic Regression
    • Stepwise Regression
    • Multivariate Adaptive Regression Splines (MARS)
    • Locally Estimated Scatterplot Smoothing (LOESS)
  • Instance-based Algorithms
    • k-Nearest Neighbor (kNN)
    • Learning Vector Quantization (LVQ)
    • Self-Organizing Map (SOM)
    • Locally Weighted Learning (LWL)
    • Support Vector Machines (SVM)
  • Regularization Algorithms
    • Ridge Regression
    • Least Absolute Shrinkage and Selection Operator (LASSO)
    • Elastic Net
    • Least-Angle Regression (LARS)
  • Decision Tree Algorithms
    • Classification and Regression Tree (CART)
    • Iterative Dichotomiser 3 (ID3)
    • C4.5 and C5.0 (different versions of a powerful approach)
    • Chi-squared Automatic Interaction Detection (CHAID)
    • Decision Stump
    • M5
    • Conditional Decision Trees
  • Bayesian Algorithms
    • Naive Bayes
    • Gaussian Naive Bayes
    • Multinomial Naive Bayes
    • Averaged One-Dependence Estimators (AODE)
    • Bayesian Belief Network (BBN)
    • Bayesian Network (BN)
  • Clustering Algorithms
    • k-Means
    • k-Medians
    • Expectation Maximisation (EM)
    • Hierarchical Clustering
  • Association Rule Learning Algorithms
    • Apriori algorithm
    • Eclat algorithm
  • Artificial Neural Network Algorithms
    • Perceptron
    • Multilayer Perceptrons (MLP)
    • Back-Propagation
    • Stochastic Gradient Descent
    • Hopfield Network
    • Radial Basis Function Network (RBFN)
  • Deep Learning Algorithms
    • Convolutional Neural Network (CNN)
    • Recurrent Neural Networks (RNNs)
    • Long Short-Term Memory Networks (LSTMs)
    • Stacked Auto-Encoders
    • Deep Boltzmann Machine (DBM)
    • Deep Belief Networks (DBN)
  • Dimensionality Reduction Algorithms
    • Principal Component Analysis (PCA)
    • Principal Component Regression (PCR)
    • Partial Least Squares Regression (PLSR)
    • Sammon Mapping
    • Multidimensional Scaling (MDS)
    • Projection Pursuit
    • Linear Discriminant Analysis (LDA)
    • Mixture Discriminant Analysis (MDA)
    • Quadratic Discriminant Analysis (QDA)
    • Flexible Discriminant Analysis (FDA)
  • Ensemble Algorithms
    • Boosting
    • Bootstrapped Aggregation (Bagging)
    • AdaBoost
    • Weighted Average (Blending)
    • Stacked Generalization (Stacking)
    • Gradient Boosting Machines (GBM)
    • Gradient Boosted Regression Trees (GBRT)
    • Random Forest